## NOVEL ANTIBIOTICS, COCHLEAMYCINS A AND B

Sir:

In the course of screening for new antitumor antibiotics, we have found novel antibiotics named cochleamycins A and B (Fig. 1) from a culture of *Streptomyces* sp., which was isolated from a soil sample collected at Nishimeya-cho, Aomori, Japan. Cochleamycins A and B were formerly called DT136 A and B<sup>1)</sup> and the producing organism has been deposited at the Fermentation Research Institute, Agency of Industrial Science and Technology, Japan, with an accession No. of FERM BP-2298. In this communication, we report on the fermentation, isolation, structure elucidation and biological activities of cochleamycins A and B.

The fermentation was carried out in 500-ml Erlenmeyer flasks containing 100 ml of medium with following composition: glucose 2.5%, soybean meal 1.5%, dry yeast 0.2% and CaCO<sub>3</sub> 0.4%.

The pH of the medium was adjusted to 7.2 before sterilization. The seed culture was inoculated into the flasks, and the fermentation was carried out at  $27^{\circ}$ C for 7 days on a rotary shaker.

After removal of the mycelium, the supernatant (4 liters) was applied to a column of Diaion HP-20. The column was washed with 15% MeOH and active materials were eluted with MeOH. The eluate was concentrated in vacuo to a minimum volume and extracted with EtOAc at pH 7. The extract was evaporated to dryness and subjected to silica gel column chromatography (Wakogel C-200) using CHCl<sub>3</sub>-MeOH (100:1). In this chromatography, cochleamycins A (1) and B (2) were separated from each other. The fraction of 1 was subjected to Sephadex LH-20 chromatography (solvent; MeOH) to give pure 1 (22 mg). The fraction of 2 was developed on a centrifugal partition chromatograph using the solvent system of hexane-MeOH (2:1), and 7 mg of pure 2 was obtained. The physicochemical properties of 1 and 2 are summarized in





Cochleamycin A

Cochleamycin B

Table 1. Physico-chemical properties of cochleamycins A and B.

|                                                                             | Cochleamycin A                        | Cochleamycin B                                 |
|-----------------------------------------------------------------------------|---------------------------------------|------------------------------------------------|
| Appearance                                                                  | Colorless powder                      | Colorless powder                               |
| MP (°C, dec)                                                                | 200~203                               | 133~135                                        |
| $[\alpha]_D^{25}$                                                           | $+107^{\circ}$ (c 1.0, MeOH)          | $+83^{\circ}$ (c 0.1, MeOH)                    |
| Molecular formula                                                           | $C_{21}H_{26}O_{6}$                   | C <sub>21</sub> H <sub>26</sub> O <sub>5</sub> |
| HRFAB-MS Calcd:                                                             | 375.1906                              | 359.1802                                       |
| Found:                                                                      | $375.1857 (M + H)^+$                  | $359.1830 (M + H)^+$                           |
| UV $\lambda_{\text{max}}^{\text{MeOH}}$ (E <sup>1</sup> % <sub>1 cm</sub> ) | 245 (146)                             | End absorption                                 |
| IR $v$ (KBr) cm <sup>-1</sup>                                               | 3450, 2950, 1750, 1715, 1710,<br>1240 | 2950, 1760, 1740, 1735, 1240                   |

| Position | Cochleamycin A   |                                                          | Cochleamycin B   |                                                         |
|----------|------------------|----------------------------------------------------------|------------------|---------------------------------------------------------|
|          | $\delta_{\rm C}$ | $\delta_{\mathrm{II}}$                                   | $\delta_{\rm C}$ | $\delta_{\mathrm{H}}$                                   |
| 1        | 72.8 d           | 4.98 (ddd 2.4, 4.5, 7.5) <sup>b</sup>                    | 73.0 d           | 4.98 (m)                                                |
| 3        | 165.7 s          |                                                          | 169.9 s          |                                                         |
| 4        | 136.1 s          |                                                          | 60.4 s           |                                                         |
| 5        | 154.0 d          | 6.77 (d 11.3)                                            | 24.7 t           | 1.65°,<br>1.82°                                         |
| 6        | 40.6 d           | 3.30 (ddd 2.4, 5.6, 11.3)                                | 31.9 d           | 2.25 (m)                                                |
| 7        | 35.6 d           | 2.72 (ddd 2.4, 6.2, 17.0)                                | 39.4 d           | 2.47°                                                   |
| 8        | 34.9 t           | $1.68 \sim 1.70^{\circ}$                                 | 35.5 t           | 1.59~1.63°                                              |
| 9        | 35.5 d           | 2.05°                                                    | 35.5 d           | 2.15 (m)                                                |
| 10       | 82.2 d           | 4.94 (d 3.8)                                             | 82.6 d           | 4.88 (d 4.0)                                            |
| 11       | 42.5 d           | 2.84 (m)                                                 | 42.8 d           | 2.64 (m)                                                |
| 12       | 128.6 d          | 5.68 (ddd 3.2, 3.2, 10.5)                                | 130.2 d          | 5.37 (ddd 2.0, 3.2, 10.0)                               |
| 13       | 128.6 d          | 5.91 (ddd 2.4, 2.4, 10.5)                                | 129.3 d          | 5.62 (ddd 3.0, 3.0, 10.0)                               |
| 14       | 34.5 d           | 2.92 (m)                                                 | 29.0 d           | 2.47°                                                   |
| 15       | 42.5 t           | 1.69°,<br>1.97 (ddd 6.8, 6.8, 16.8)                      | 38.2 t           | 1.46 (ddd 4.5, 6.8, 14.0),<br>1.90 (ddd 3.5, 3.5, 14.0) |
| 16       | 66.5 d           | 3.62 (ddd 2.4, 6.8, 11.8)                                | 30.3 d           | 2.05°                                                   |
| 17       | 45.6 t           | 1.78 (ddd 2.4, 2.4, 15.5),<br>2.48 (ddd 4.5, 11.8, 15.5) | 33.3 t           | 1.82°,<br>2.18 (ddd 1.5, 10.0, 14.5)                    |
| 18       | 41.1 t           | 2.66 (d 19.0),<br>3.11 (dd 7.5, 19.0)                    | 41.3 t           | 2.42 (dd 1.5, 19.0),<br>2.72 (ddd 3.2, 3.2, 19.0)       |
| 19       | 194.2 s          |                                                          | 203.1 s          |                                                         |
| 20       | 13.9 q           | 0.92 (d 7.0)                                             | 14.1 q           | 0.89 (d 6.8)                                            |
| 21       | 170.9 s          |                                                          | 170.8 s          |                                                         |
| 22       | 21.1 q           | 2.08 (s)                                                 | 21.1 q           | 2.06 (s)                                                |

Table 2. 125 MHz <sup>13</sup>C NMR and 500 MHz <sup>1</sup>H NMR spectral data of cochleamycins A and B<sup>a</sup>.

<sup>a</sup> Taken in CDCl<sub>3</sub>.

<sup>b</sup> Coupling constants in J = Hz.

<sup>e</sup> Resonance in one-dimensional spectra obscured by overlapping signals.

Table 1.

The molecular formula of **1** was determined to be  $C_{21}H_{26}O_6$  by HRFAB-MS data. IR absorptions (1750, 1715 and 1710 cm<sup>-1</sup>) and <sup>13</sup>C NMR signals ( $\delta_C$  165.7, 170.9 and 194.2) of **1** indicated the presence of two ester and one ketone groups. IR absorption at 3450 cm<sup>-1</sup> also proved the existence of a hydroxyl group in **1**.

The partial structure of **1** shown in Fig. 2 was determined by the analysis of  ${}^{1}\text{H}{}^{-1}\text{H}$  COSY and decoupling experiments. These experiments and  ${}^{13}\text{C}{}^{-1}\text{H}$  COSY spectrum confirmed that the hydroxyl group was attached to C-16 ( $\delta_{\rm H}$  3.62,  $\delta_{\rm C}$  66.5). Further structural elucidation was performed by the observation of the long range  ${}^{1}\text{H}{}^{-13}\text{C}$  connectivities which were detected by heteronuclear multiple-bond correlation (HMBC)<sup>2</sup> and long range selective proton decoupling (LSPD) experiments.

As shown in Fig. 3, the HMBC experiment on 1 showed the long range couplings of 10-H ( $\delta_{\rm H}$  4.94) and 22-H ( $\delta_{\rm H}$  2.08) to C-21 ( $\delta_{\rm C}$  170.9). Thus, the

Fig. 2. Partial structure of cochleamycin A.



acetoxy side chain was determined to attach to C-10. The long range couplings of 5-H ( $\delta_{\rm H}$  6.77) to C-3 ( $\delta_{\rm C}$  165.7) and C-19 ( $\delta_{\rm C}$  194.2), and 18-H ( $\delta_{\rm H}$  2.66, 3.11) to C-4 ( $\delta_{\rm C}$  136.1) and C-19 were also observed by the HMBC experiment. Therefore, the connectivities of C-5–C-4–C-3 and C-5–C-4–C-19–C-18 were confirmed. Furthermore, the LSPD experiment on 1 showed the linkage from C-1 to C-3 through the oxygen atom. Thus, we could establish the ( $\alpha,\beta$ -unsaturated)  $\beta$ -keto  $\delta$  lactone ring, and







Cochleamycin A

Table 3. Antimicrobial activity of cochleamycin A.

| Organism                              | Medium <sup>a</sup> | Diameter of<br>inhibition zone<br>(mm) |
|---------------------------------------|---------------------|----------------------------------------|
| Staphylococcus aureus                 | I                   | 16                                     |
| FDA 209P                              |                     |                                        |
| S. aureus MS14146 <sup>b</sup>        | I                   | 11                                     |
| S. aureus MS14287 <sup>b</sup>        | I                   | 15                                     |
| Micrococcus luteus                    | I                   | 25                                     |
| ATCC 9341                             |                     |                                        |
| Bacillus subtilis ATCC 6633           | Ι                   | 15                                     |
| B. subtilis PCI 219                   | 1                   | 15                                     |
| Escherichia coli NIHJ                 | Ι                   | 0                                      |
| Pseudomonas aeruginosa                | Ι                   | 0                                      |
| NCTC 10490                            |                     |                                        |
| Candida albicans Yu 1200              | 11                  | 0                                      |
| Saccharomyces cerevisiae<br>ATCC 9763 | Π                   | 0                                      |

Plate diffusion assay.  $50 \,\mu g$  was applied onto 8 mm filter disk. The disks were placed on plates seeded with the tested microorganisms in the top of the agar.

- <sup>a</sup> I: Nutrient agar (Difco), II: SABOURAUD dextrose agar (Difco).
- <sup>b</sup> Methicillin-resistant.

the structure of **1** was determined as shown in Fig. 1.

The molecular formula of **2** was determined to be  $C_{21}H_{26}O_5$  by HRFAB-MS. The formula contained one oxygen atom less than that of **1**. <sup>1</sup>H-<sup>1</sup>H COSY and decoupling experiments **2** proved the unit from C-6 to C-14 in **1** was completely preserved in the structure of **2**. Comparison of the <sup>13</sup>C NMR data of **1** and **2** revealed an upfield shift of C-16 from  $\delta_C$  66.5 to 30.3. This shift and the HRFAB-MS data indicated the absence of a hydroxyl group at C-16 in the structure of **2**. Furthermore, olefinic carbon signals of C-4 and C-5 in the structure of **1** were absent in **2**, and in turn, one methylene carbon ( $\delta_C$ 



Cochleamycin B

24.7) and one quarternary carbon ( $\delta_{\rm C}$  60.4) were observed. The <sup>1</sup>H-<sup>1</sup>H COSY experiment proved that these methylene protons were coupled to 6-H ( $\delta_{\rm H}$  2.25) and were assigned as 5-H.

In the HMBC spectrum of **2**, the 5-H protons ( $\delta_{\rm H}$  1.65, 1.82) were coupled to the quarternary carbon C-4 ( $\delta_{\rm C}$  60.4), C-3' ( $\delta_{\rm C}$  169.9) and C-19 ( $\delta_{\rm C}$  203.1) (Fig. 3). The oxymethine proton 1-H ( $\delta_{\rm H}$  4.98) also showed couplings to C-3 and C-19. Long range couplings were observed between 16-H ( $\delta_{\rm H}$  2.05) and C-3, C-4 and C-19 by a LSPD experiment. Thus, the preservation of the  $\beta$  keto  $\delta$  lactone unit in **1** and linking of C-5 and C-16 through C-4 were elucidated, and the structure of **2** was determined (Fig. 1).

Studies of the absolute configurations of 1 and 2 are now in progress, and will be reported in the future.

1 and 2 showed cytotoxicity against P388 leukemia cells ( $IC_{50}$  1.2 µg/ml and 2.6 µg/ml, respectively). 1 showed weak antimicrobial activity against Gram-positive bacteria as shown in Table 3.

## Acknowledgment

We thank Dr. M. INOUE of the Laboratory of Drug Resistance in Bacteria, School of Medicine, Gunma University for strains of methicillin-resistant *Staphylococcus aureus* MS14146 and MS14287.

> Kazutoshi Shindo Hiroyuki Kawai

Pharmaceutical Research Laboratory, Kirin Brewery Co., Ltd., Takasaki, Gunma 370-12, Japan

(Received September 5, 1991)

## References

- SHINDO, K.; H. KAWAI & M. MATSUOKA (Kirin Brewery): New substances DT136 A and B. Jpn. Kokai 286683 ('90), Nov. 26, 1990
- BAX, A. & M. F. SUMMERS: <sup>1</sup>H and <sup>13</sup>C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108: 2093 ~ 2094, 1986